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Few-optical-cycle Bessel-Gauss pulsed beams in free space
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We introduce a new family of nonseparable, pulselike and beamlike solutions of the wave equation in the
paraxial approximation with pseudonondiffracting behavior. They are the pulsed versions of the Bessel-Gauss
beams by Goriet al., and encompass as particular cases the diffraction-free Bessel-X pulses, isodiffracting
pulses, and, in the many-cycle limit, Bessel and Gaussian beams. Unlike Bessel-X waves, these solutions carry
finite energy but retain nondiffracting behavior over a finite propagation distance, and could be physically
produced with mode-locked toroidal resonators.

PACS number~s!: 42.25.2p, 42.65.Re, 42.65.Sf
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I. INTRODUCTION

Recent developments in laser technology have resulte
the generation of extremely short and intense laser pul
containing only a few field oscillations, even only one,
optical frequencies@1#. Much attention is therefore bein
paid to the problem of their propagation in vacuum@2,3#,
dispersive linear@4# and nonlinear media@1,5#, optical sys-
tems @6,7#, and in particular to their diffraction propertie
which have been shown to differ substantially from those
quasimonochromatic, many-cycle pulses. For ultrash
pulses, due to the ultrawide frequency spectra involved,
fraction appears like a dispersive phenomenon@8,9#, in the
sense that the dependence of diffraction on frequency ca
be neglected. Among the numerous studies on diffraction
few-cycle pulses, a number of papers@3,10–15# report model
solutions of the propagation equations, both in the para
and nonparaxial regimes, from which many distinctive fe
tures of their propagation have been inferred.

Isodiffracting ~ID! pulses@6,16#, for instance, also called
pulsed Gaussian beams@3,11#, are superpositions of Gaus
ian beams with different frequencies and a common R
leigh range. They appear to be the simplest nontrivial mo
for pulsed-beam propagation, since they already con
some spatiotemporal coupling phenomena arising from
persive diffraction, such as time differentiation on propag
tion, temporal and spectral changes along the transve
plane, and time-dependent diffraction@3,11#. ID pulses carry
finite energy and appear to be an adequate model for
radiation from mode-locked lasers with stable two-mirr
resonators.

Bessel-X waves@13–15#, on the other hand, are superp
sitions of Durnin’s Bessel beams@17# with different frequen-
cies. They represent a class of pulsed beams with optim
propagation properties, since they are diffraction- a
PRE 621063-651X/2000/62~4!/5729~9!/$15.00
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dispersion-free, i.e., they maintain their transversal and l
gitudinal localization upon propagation over arbitrary d
tances. Unfortunately, the Bessel-X waves carry infinite en-
ergy, like monochromatic Bessel beams, and therefore
not physically realizable.

In this paper, we introduce a class of pulsed beams,
tained as superpositions of Bessel-Gauss~BG! beams
@18,19#. BG beams were introduced by Goriet al. @19# as the
paraxially propagated field of a Bessel function apertured
a Gaussian distribution. They are therefore finite-ener
physically realizable versions of the Bessel beam, simula
the nondiffracting behavior of the latter over a certain prop
gation distance@19#. Apart from their appealing analytica
properties and propagation features, BG beams have fo
application in resonator theory@20#, and very recently in
nonlinear optics@21,22# for improving the efficiency of
second-order harmonic generation. Suitably superposing
beams of different frequencies, we construct pulsed-be
solutions of the paraxial wave equation, which will b
termed BG pulsed beams.

In particular, the BG pulsed beams with the so-call
Poisson-like@3# or ‘‘power spectrum’’ @12#, which is often
used to model few-cycle pulses, lead to a four-parame
family of nonseparable pulsed-beam solutions of the para
wave equation in terms of Legendre polynomials. This ty
of BG pulsed beam encompasses the ID pulses and
Bessel-X waves as particular cases and, in the many-cy
limit, BG beams, and hence Gaussian and Bessel beam

We show that few-cycle BG pulsed beams can pres
pseudo-non-diffracting behavior for suitable choices of th
parameters. This means that they imitate the nondiffrac
behavior ofX-Bessel waves over a finite propagation d
tance, or diffraction-free range, which is shown to be larg
than the diffraction length expected from its transversal s
At the same time, BG pulsed beams retain the property of
5729 ©2000 The American Physical Society
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pulses of carrying a finite amount of energy, i.e., of be
physically realizable. We show, indeed, that BG puls
beams can model the output radiation from stable mo
locked toroidal resonators.

II. PROPAGATION EQUATIONS AND BASIC SOLUTIONS

We begin our analysis by considering a linearly polariz
light beam with field E(x' ,z,t), x'[(x,y), propagating
along the positivez direction according to the wave equatio

DE2
1

c2

]2E

]t2 50, ~1!

whereD denotes the Laplacian operator. It is convenient
introduce the local coordinatest85t2z/c, z85z, to extract
from E its rapid variation alongz due to the wave transport a
the velocity c. Then the remaining dependence
E(x' ,z8,t8) on the new propagation coordinatez8 describes
only changes due to diffraction, i.e., to the finite transver
extent of the wave. For a paraxial wave, one can assume
these changes are slow enough so thatu]E/]z8u
!(1/c)u]E/]t8u, or equivalently,Dz@cDt, whereDz and
Dt are typical length and variation time ofE(x' ,z8,t8). To
fix ideas, we can think ofDz as the diffraction length andDt
as a suitable fraction of the periodT0 in the case of a pulse
with a few oscillations, e.g.,T0/2p51/v0 , corresponding to
a phase increase of 1 rad. Taking the following relations i
account:

]

]z
5

]

]z8
2

1

c

]

]t8
,

]

]t
5

]

]t8
,

and performing the above approximation, the wave equa
~1! transforms into

2

c

]2E

]t8]z8
5D'E, ~2!

whereD' is the two-dimensional Laplace operator perpe
dicular to the propagation direction. This equation is pr
ently receiving much attention@2,3,8,9# since it allows one to
extend the simple paraxial treatment of diffraction to ar
trary ultrashort waveforms.

A fundamental solution of Eq.~2! is, of course, the mono
chromatic Gaussian beam

E~r ,z,t !5
iz0

q
expS 2

ivr 2

2cq Dexp~ ivt8!, ~3!

where v is the angular frequency of light,r 25x21y2, q
5z1 iz0 , and z0.0 is the Rayleigh range or diffractio
length. ~Note that we omit the prime sign inz in integrated
expressions, since numericallyz85z.! Pulsed-beam solu
tions of Eq.~2! can now be constructed by suitably supe
posing Gaussian beams. For example, the superposition
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E~r ,z,t !5
iz0

q

1

p E
0

`

dv f̂ ~v!expS 2
ivr 2

2cq Dexp~ ivt8!

~4!

of Gaussian beams with different frequenciesv but with the
same Rayleigh rangez0 results in the ID pulse@6,16#, or
pulsed Gaussian beam@3,11#,

E~r ,z,t !5
iz0

q
FS t82

r 2

2cqD , ~5!

where

F~ t !5
1

p E
0

`

dv f̂ ~v!exp~ ivt ! ~6!

is the analytic signal of the real pulse shapef (t)5Re@F(t)#.
The spot size of the ID pulses increases on propagation
cording to the hyperbolic law@3# a(z)5a0A11z2/z0

2, from
a waist or minimum width (z50) of the order of

a0;A2cDtz0, ~7!

with Dt the typical variation time ofF(t), up to a(z)5zu0
in the far field (z@z0), where the divergence angle is a
proximately given by

u0;A2cDt/z0. ~8!

The spreading properties of the ID pulses thus closely
semble those of each Gaussian beam in the superpos
due to their common Rayleigh rangez0 .

On the other hand, superpositions of Bessel beams of
form

E~r ,z,t !5
1

p E
0

`

dv f̂ ~v!J0S v

c
r sinu Dexp~ ivt9!, ~9!

with t95t2z cosu/c, of different frequencies and a commo
cone angleu, lead to the nondiffracting, nondispersin
X-Bessel waves@13–15#, which are infinite-energy solution
of the nonparaxial wave equation~1!. X-Bessel waves can
alternatively be seen as superpositions of plane pulsesF(t)
with propagation directions evenly distributed over the s
face of a cone of apex angleu. The meridian sections of the
X-Bessel waves resemble a letter ‘‘X’’ of minimum width
~i.e., the waist of the ‘‘X’’ !

ax;
2cDt

u
, ~10!

propagating without deformation at the superluminal velo
ity c/cosu.

III. BESSEL-GAUSS PULSED BEAMS

A. Frequency-domain analysis

To combine the nondiffracting properties ofX-Bessel
waves with the finite energy of the ID pulses, we repla
both the Gaussian and the Bessel basis with the monoc
matic BG family of solutions of the paraxial wave equatio
~2!, namely@19#,
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E~r ,z,t !5
iz0

q
expF2

iv

2cq
~r 21z2u2!G

3J0S iz0

q

v

c
ur Dexp~ ivt9!, ~11!

where now

t95t2z~12u2/2!/c5t81zu2/2c ~12!

is the paraxial approximation of the reduced timet9 in the
expression of theX-Bessel waves@Eq. ~9!#, andJ0( ) is the
zero-order Bessel function of the first kind@23#. Of course,
there are other possibilities to bring together nondiffract
behavior and finite energy. The Bessel function can be a
tured, for example, with a super-Gaussian window@24#, or a
hard-edged aperture@25#, but contrary to the Gaussian win
dow, these choices do not lead to an analytic expression
the propagated field.

New pulsed-beam solutions of the paraxial wave equa
~2! can now be constructed by superposing BG beams
different frequencies, i.e.,

E~r ,z,t !5
iz0

q

1

p E
0

`

dv f̂ ~v!expF2
iv

2cq
~r 21z2u2!G

3J0S iz0

q

v

c
ur Dexp~ ivt9!, ~13!

where, as in the case of ID pulses andX-Bessel waves, the
parametersz0 and u will be chosen to be independent o
frequency. The remainder of this paper is devoted to
study of this kind of superposition. As we shall see later
for specific choices of the spectrumf̂ (v) or the pulse form
F(t), closed-form analytic expressions for Eq.~13! in terms
of the Legendre polynomials can be obtained.

The construction of BG pulsed beams as a superpos
of BG beams with constant Rayleigh range and apex an
suggests a possible method to experimentally produce th
According to Sheppard and Wilson@18#, the BG beams can
be identified as the fundamental modes of a suitably
signed toroidal resonator@18,26,27#. Figure 1 shows a sketc

FIG. 1. Sketch of a stable toroidal resonator to generate the
pulsed beam.
g
r-

or

n
of

e
,

n
le
m.

-

of the meridian section of such a resonator, whose fun
mental mode is a cw BG beam with certain Rayleigh ran
z0 and apex angleu. It should be stressed that these tw
parameters are independent of the wavelength of the
mode, since they are fixed only by the resonator geome
Thus, by coherently superposing cw BG fundamental mo
at different frequencies, e.g., by mode-locking them ins
the toroidal resonator, a BG pulsed beam of the type of
~13! will be generated.

B. Time-domain analysis

The BG pulsed beam can also be constructed as a sui
superposition of pulsed spherical waves radiated by comp
point sources. This alternative derivation of Eq.~13! pro-
vides a new view of the BG pulsed beams and their relati
ship with ID pulses andX-Bessel waves. Consider first th
pulsed spherical wave from a point source at the origin
coordinatesE(r,t)5(1/2pr)F(t2r/c), wherer5(x21y2

1z2). Under suitable complex time and axial shifts,t→t
1 i t0 , z→q5z1 iz0 , the spherical wave remains a solutio
of the nonparaxial wave equation~1!, and transforms into the
pulsed beams from stationary complex point sources stu
by Heyman, Felsen, and others in Refs.@10# and @28#. The
paraxial approximation of the pulsed spherical wave

E~x' ,z,t !5
1

2pz
FS t82

x21y2

2cz D , ~14!

satisfying the paraxial wave equation~2!, transforms, under
the same complex shifts, into the ID pulse,

E~x' ,z,t !5
1

2p

iz0

q
FS t81 i t02

x21y2

2cq D . ~15!

It has been recently shown@29# that an additional complex
shift in the transversal coordinates amounts to a beam r
tion. In particular, the shiftsx→x2 iz0u cosf, y→y
2 iz0u sinf lead to an ID pulse whose propagation directi
forms an angleu ~small enough! with respect to thez axis
and an azimuthal anglef with respect to thex axis. The
superposition

E~r ,z,t !5
1

2p

iz0

q E
0

2p

df FF t81 i t0

2
~x2 iz0u cosf!21~x2 iz0u sinf!2

2cq G
~16!

of identical ID pulses with directions evenly distributed ov
the surface of a cone of angleu can be proved to be identica
to the expression of BG pulsed beams@Eq. ~13!#. To verify
this statement, we first introduce polar coordinates,x
5r cosw, y5r sinw, and let t052u2z0/2c, to write Eq.
~16! as

G
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E~r ,z,t !5
1

2p

iz0

q

3E
0

2p

df FF t82
r 21z2u222irz0u cos~f2w!

2cq G .
~17!

Then, using Eq.~6! for F(t) and the following integral rep-
resentation of the Bessel function@23#,

J0~s!5
1

2p E
0

2p

ds exp~ is coss!, ~18!

Eq. ~13! is easily recovered. We then conclude that a B
pulsed beam is a homogeneous superposition of ID pul
all with the same Rayleigh rangez0 and waist positionz
50, whose propagation directions are distributed over a c
of apex angleu. An analogous scheme is used forX-Bessel
waves, which are obtained by superposing plane pulses
propagation directions over a cone.

IV. BESSEL-GAUSS PULSED BEAMS
WITH POISSON-LIKE SPECTRUM

We are mainly interested in the propagation features
BG pulsed beams with few optical oscillations. To this ai
the so-called Poisson-like or ‘‘power spectrum’’

f̂ ~v!5
pt0

a

G~a!
va21 exp~2vt0!, v.0, ~19!

a51,2,...,t0.0, which has often been used for pulse a
pulsed-beam modeling@3,12#, appears to be particularly sui
able.

The usefulness of the Poisson-like spectrum in Eq.~19!
lies, first, in the fact that it yields the family of analyti
pulses

F~ t !5
1

p E
0

`

dv f̂ ~v!exp~ ivt !5S i t 0

t1 i t 0
D a

, ~20!

having a characteristic rise time

Dt;t0 /a, ~21!

a growing number of oscillations, from one-half (a51) to
an arbitrary high number (a→`), of mean frequency@3#

vm.a/t0 , ~22!

and a pulse duration@3#

T.A2/at0 . ~23!

Pulses of the desired frequency and number of oscillati
can then be tailored by suitably selecting the parametea
and t0 . Moreover, taking the limita→`, t0→`, with
a/t05vm5const,F(t) tends to the monochromatic sign
exp(ivmt), a property which follows from the basic relation

lim
n→`

~11x/n!n5ex. ~24!
s,

e

ith

f
,

s

Second, the superposition of BG beams@Eq. ~13!# with
the Poisson-like spectrum, or alternatively, the superposi
of ID pulses@Eq. ~17!# with the analytic signal Eq.~20!, can
be evaluated in closed form. Using the integrals 6.621.1
3.661.4 of Ref.@30#, we obtain

E~r ,z,t !5
iz0

q H i t 0

F ~ tc1 i t 0!22S iz0

cq
ur D 2G1/2J a

3Pa21H tc1 i t 0

F ~ tc1 i t 0!22S iz0

cq
ur D 2G1/2J ,

~25!

where

tc5t92
1

2cq
~r 21z2u2! ~26!

is a space-dependent complex time, andPn( ) is the Leg-
endre polynomial of ordern @23#. Equation~25! is a novel,
four-parameter family of solutions of the paraxial wa
equation having beam and pulse form. In fact, inspection
Eq. ~25! shows that ~a! the denominator $(tc1 i t 0)2

2@( iz0 /cq)ur #2% is different from zero for any permissibl
value of the parameterst0.0, z0.0, u>0; ~b! along the
transversal direction the amplitude approaches zero as 1/r 2a,
and then the intensity as 1/r 4a; ~c! for large values ofut9u,
the amplitude decays as 1/ut9ua, and then the intensity a
1/ut9u2a. Therefore,~d! the integration of the intensity in time
and space yields, for any value ofa, a finite value of the total
energy. In conclusion, Eq.~25! is a nonsingular, beamlike
and pulselike, finite-energy solution of the paraxial wa
equation, which moreover is endowed with pseudo-n
diffracting properties, as we shall see in Sec. VI.

V. PARTICULAR AND LIMITING CASES

One of the most appealing features of the BG puls
beams with the Poisson-like spectrum@Eq. ~25!# is its capa-
bility of reproducing light waves as Gaussian, Bessel bea
and their pulsed versions, ID andX-Bessel waves, by mean
of a single algebraic function.

A. Isodiffracting pulsed beams and Gaussian beams

When the cone angle isu50, we havetc5t82r 2/2cq
and the argument of the Legendre polynomialPa21 becomes
1, so that Eq.~25! reduces to

E~r ,z,t !5
iz0

q S i t 0

t82r 2/2cq1 i t 0
D a

, ~27!

which is the expression of the ID pulse with the Poisson-l
spectrum@3#. Furthermore, it has been proved@3# that Eq.
~27! with a51 is the paraxial form of Ziolkowski’s EDEPT
~electromagnetic directed-energy pulse train! @12#, and that
the limit for a, t0→` with a/t05vm5const is the mono-
chromatic Gaussian beam of frequencyvm .
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B. Nondiffracting X-Bessel pulses and Bessel beams

In the limit z0→`, we haveiz0 /q→1, 1/q→0, and tc
→t9. The BG pulsed beam in Eq.~25! takes then the form o
the superluminal, nondiffracting, and nondispersing BesseX
pulse, that is,

E~r ,z,t !5H i t 0

@~ t91 i t 0!22u2r 2/c2#1/2J a

3Pa21H t91 i t 0

@~ t91 i t 0!22u2r 2/c2#1/2J , ~28!

described by Friberget al. @13#. The particular case of Eq
~28! with a51 is the earlier broadbandX wave introduced
by Lu and Greenleaf in Ref.@14#, and the limita, t0→`
with a/t05vm5const is the monochromatic Bessel beam
Durnin et al. @17#. To prove formally the latter assertion, w
write the denominator in the first factor of Eq.~28! as (t9
1 i t 0)22(ur /c)25(t91 i t 01ur /c)(t91 i t 02ur /c). On re-
placing t0 with a/vm and by using Eq.~24!, we get

lim
a,t0→`

H i t 0

@~ t91 i t 0!22u2r 2/c2#1/2J a

5eivmt9. ~29!

Furthermore, on writing the argument ofPa21 in Eq. ~28! as
cos$tan21@(iur/c)/(t91ia/vm)#%, which for largea can be re-
placed by cos(urvm/ac), and using the limiting expressio
limn→` Pn@cos(x/n)#5J0(x) in Ref. @23#, we obtain

lim
a,t0→`

Pa21H t91 i t 0

@~ t91 i t 0!22u2r 2/c2#1/2J 5J0S vm

c
ur D .

~30!

In conclusion, from Eqs.~29! and~30!, theX-Bessel pulse in
Eq. ~28! tends to the Bessel beamJ0(vmur /c)exp(ivmt9) as
a and t0 tend to infinity while their quotient remains con
stant.

C. Pseudo-non-diffracting Bessel-Gauss beams

For uÞ0, z0Þ`, in the limit a, t0→` with a/t05vm
5const, expression~25! of the BG pulsed beam yields th
expression~11! of the monochromatic BG beam of fre
quencyvm . The limiting procedure to be used is similar
the one above, therefore we will not go into details.

VI. PROPAGATION FEATURES OF THE BESSEL-GAUSS
PULSED BEAMS

The spatiotemporal-temporal form of the BG puls
beams resembles in some aspects that of the Bessel-X pulses
and in other aspects that of the ID pulses, in the same wa
the cw BG beams share their propagation features with b
Bessel and Gaussian beams@19#.

The overall characteristics of a BG pulsed beam of
rametersz0 ,u and temporal formF(t) can be easily inferred
from its representation in terms of a superposition of
pulses of the same value ofz0 , pulse formF(t), and propa-
gation directions over a cone of angleu. Whenu is signifi-
cantly smaller than the spreading angle of the ID pulses,u0 ,
one can expect the superposition not to differ substanti
f

as
th

-

ly

from a single ID pulse, that is, from the limiting case ofu
50. On the contrary, whenu is larger thanu0 , the compo-
nent ID beams will overlap only up to a finite axial distanc
Within such a distance, the superposition is expected to
semble the Bessel-X wave of cone angleu, since such a
superposition can be assimilated, up to a certain extent,
conical superposition of plane pulses, as is the case of
Bessel-X pulses. The axial distance where the ID pulses ke
on overlapping, or diffraction-free rangeD, can be estimated
@19# as the propagation distance at which a typical tilted
pulse in the superposition shifts transversally for a dista
equal to its transversal widtha0 , that is, D5a0 /u, or on
account of Eq.~7!, D;A2cDtz0/u, which gives an estimate
of the diffraction-free range in terms of the BG pulsed-be
characteristics. In the case of the BG pulsed beam with
Poisson-like spectrum, we obtain

D;S 2ct0z0

au2 D 1/2

. ~31!

On defining a fictitious ‘‘equivalent’’ diffraction length o
the Bessel-X wave according to the transversal width aszX

5kmaX
2/25vmaX

2/2c5aaX
2/2ct0 , and using that from Eqs

~10! and ~21! aX;2ct0 /au, we obtain the expressionD
;AzXz0, that is, the diffraction-free range is approached
the geometric mean of the diffraction lengths of the limitin
ID and Bessel-X waves and, in particular, the diffraction-fre
rangeD is always larger than the diffraction lengthzX ex-
pected from its transversal width.

The above considerations are sustained by numerical
of the expression~25!. Figure 2~a! shows the real part of the
field E of the BG pulsed beam with the Poisson-like spe
trum and with a typical set of parameters~z0518 mm, u
50.025 rad,a56, t0518 fs! when it is centered atz50, i.e.,
at the real timet50. The pulse form consists of about on
and-a-half oscillations of wave numbervm /c, with the fre-
quencyvm5a/t053 fs21. The divergence angle of the com
posing ID pulses is given byu05A2ct0 /z0a50.01 rad, and
therefore the ratiou/u052.5 is greater than 1. We then ex
pect the BG pulsed beam to be very similar to the limiti
Bessel-X wave ~see Sec. V B!, which is shown in Fig. 2~b!.
The only significant difference is that the arms of the let
‘‘ X’’ of the BG pulsed beams are slightly damped.

Figure 3 illustrates the propagation of the BG puls
beam away fromz50. After the time intervalst513 123 and
26 246 fs, the BG pulsed beam arrives atz5D/2 and D,
respectively@see Figs. 3~a! and 3~b!#, where the diffraction-
free range isD57.875 mm. It can be seen that the B
pulsed beam approximately preserves its initial form, exc
for the tendency to loosen the front arms and to increase
intensity of the rear arms. This peculiarity is due to the l
eral displacement of the interfering ID pulses on propa
tion. In fact, at the timet5z0 cosu/c @Fig. 3~c!#, when the
BG pulsed beam has propagated at the distancez0518 mm
sizably larger than the diffraction-free range, the rear ar
are almost splitted off from the partially obscured axial zon
Therefore, the pulsed beam acquires the form of an annu
formed by the no longer overlapping ID pulses. The slig
bending of the splitted rear arms reflects, in fact, the cur
ture of the pulse fronts of the ID pulses@3#.
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FIG. 2. Gray scale plots of the
real field uReE(r,z,t)u of ~a! the
BG pulsed beam defined b
the parameters~z0518 mm, u
50.025 rad,a56, t0518 fs! and
~b! the Bessel-X pulsed beam
of parameters (u50.025 rad,
a56, t0518 fs).
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As for the residual on-axis amplitude@Fig. 3~c!#, some
stretching and deceleration of the pulse is appreciated. It
interest to verify this point from the general expression~17!
of the BG pulsed beams. For on-axis points, Eqs.~13! and
~17! reduce to

E~0,z,t !5
iz0

q
FS t92

z2u2

2cqD , ~32!

which can also be written in the form

E~0,z,t !5
iz0

q
FS t92

z3u

2cuqu2 1 i
z2u2z0

2cuqu2D . ~33!

This expression is to be compared with the invariable on-a
pulse formF(t9) of the Bessel-X pulse. Apart from the over-
all amplitude changeiz0 /q, we see that the pulse form of th
BG pulsed beam shifts on propagation by az-dependent
complex quantity. The real partz3u2/2cuqu2 of the shift is an
actual time delay with respect to theX-Bessel wave, from
which the pulse velocity at any propagation distancez can
easily be evaluated to be

v~z!5
c

12
u2

2
~12z2/uqu2!

. ~34!

Instead of the superluminal constant velocityv5c/(1
2u2/2).c/cosu of the Bessel-X waves, the velocity of the
BG pulsed beamv(z) ranges from the superluminal on
c/cosu within the diffraction-free range down toc for large
propagation distances. The imaginary partz0z2u2/2cuqu2 of
the shift amounts to a change in the pulse form on propa
tion, which may involve, depending on the specific choice
F(t), pulse broadening, frequency shift, and deformation@3#.

For example, the on-axis field of the BG pulsed be
with the Poisson-like spectrum, as given by Eqs.~25! and
~26!, can be displayed in the form

E~0,z,t !5
iz0

q S t0

t01z2z0u2/2cuqu2D a

3F i ~ t01z0z2u2/2cuqu2!

~ t92z3u/2cuqu2!1 i ~ t01z2z0u/2cuqu2!G
a

,

~35!
of

is

a-
f

which shows that in this case the on-axis temporal form
mains a Poisson-like spectrum function on propagation,
the scaling parameter t0 is replaced with t0
1z2z0u2/2cuqu2. This change results in an increasing pul
duration and a diminishing frequency of the oscillatio
upon propagation, which from Eqs.~22! and ~23! are given
by

T~z!5T1S 2

a D 1/2S z0u2

2c D S z

uqu D
2

~36!

and

vm~z!5
a

t01~z0u2/2cuqu2!z2 , ~37!

respectively. A detailed analysis of these formulas sho
that the pulse duration and frequency remain almost cons
and equal to those of the Bessel-X wave within the
diffraction-free range, and start to vary slowly outside th
range up to the highest durationT1A1/a(z0u2/2c) and
down to the smallest frequencya/(t01z0u2/2c) in the far
field (z@z0).

An approximate far-field expression of the pseudo-no
diffracting (u@u0) BG pulsed beams of arbitrary pulse for
can be obtained from the asymptotic form of Eq.~13! for z
→`, r→`. Forz@z0 we can writeq.z, and for larger we
can let J0( ix)5I 0(x);exp(x)/A2px, where x5zvur /zc,
I 0( ) is the zero-order, first kind, modified Bessel functio
@23#, and we have used its asymptotic form for a large ar
ment @30#. Equation~13! then becomes

E~r ,z,t !;
i

z E0

`

dv f̂ ~v!S z

vr D
1/2

expF2
vz0

2cz2 ~r 2zu!2G
3expF ivS t82

r 2

2czD G , ~38!

where unessential amplitude constants have been omitte
u.u0 , the centerzu of the Gaussian function in the inte
grand is sizably larger than its widthA2cz2/vz0. Therefore,
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r in the square root can be replaced by its mean value wi
the Gaussian function, i.e.,r .zu. On doing so, we obtain

E~r ,z,t !;
i

z E0

`

dv
f̂ ~v!

Av
expF ivS t82

r 2

2czD G
3expF2

vz0

2cz2 ~r 2zu!2G ~39!

as an asymptotic expression of the BG pulsed beams
u@u0 in the far field. The energy distribution

FIG. 3. Gray scale plots for the propagation of the BG puls
beam of Fig. 2. The white horizontal lines indicate the positions
center of the superluminal Bessel-X pulse at the times indicated i
each plot.
in

th

W~r ,z!5E
2`

`

@ReE~r ,z,t !#25 1
2 E

2`

`

uE~r ,z,t !u2dt

~40!

can now be written, from Parseval’s theorem, as

W~r ,z!;
1

z2 E
0

`

dv
u f̂ ~v!u2

v
expF2

vz0

cz2 ~r 2zu!2G .
~41!

The form of this equation indicates that the transversal
ergy distribution W(r ,z5const) takes a maximum atr
5zu, and is a strictly decreasing function away from th
maximum. On the other hand, the dependence ofE(r ,z,t) on
time through the quantityt8 denotes that the on-axis puls
propagates at the velocityc in the far field, as we have see
above. In addition, the time delayr 2/2cz of the arrival of the
pulse at each planez accounts for a spherical pulse front o
radius z. In short, in the far field a pseudo-non-diffractin
BG pulsed beam has the form of an annulus of mean ra
r 5zu over the surface of an expanding sphere at the velo
of light c.

VII. RELATION WITH THE BESSEL-GAUSS PULSE
OF OVERFELT

In the paraxial wave equation~2!, the variablesz8 and t8
play a symmetrical role. Then the interchangez8→ct8, t8
→z8/c in any solution results in a new solution. In partic
lar,

E~r ,z,t !5
iz0

q H i t 0

F ~zc/c1 i t 0!22S iz0

cq
ur D 2G1/2J a

3Pa21H zc/c1 i t 0

F ~zc/c1 i t 0!22S iz0

cq
ur D 2G1/2J ,

~42!

whereq5ct81 iz0 ,

zc5z92
1

2cq
~r 21u2c2t82!, ~43!

andz95z1ct8u2/2 is a solution of the wave equation und
the paraxial approximation, which to our knowledge has
been previously reported. Its nature can be understood
writing Eq. ~42! as

E~r ,z,t !5
iz0

q

1

p E
0

`

dv f̂ ~v!expF2
iv

2cq
~r 21c2t82u2!G

3J0S iz0

q

v

c
ur Dexp~ ivz9/c!, ~44!

where f̂ (v) is again the Poisson-like spectrum, but the ba
functions in the superposition are now

d
f
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E~r ,z,t !5
iz0

q
expF2

iv

2cq
~r 21c2t82u2!G

3J0S iz0

q

v

c
ur Dexp~ ivz9/c!. ~45!

These functions are also solutions of the paraxial wave eq
tion ~2!, and can be readily identified with the paraxial a
proximations to the BG focus wave modes, first described
Overfelt @31#, and recently reconsidered in several wor
@32–34#, namely,

E~r ,z,t !5
a1

V
J0S ka1r

V DexpS 2
br 2

V D
3expS 2 ik2a1j

4bV Dexp~ ibh!, ~46!

wherej5z2ct, h5z1ct, V5a11 i j, anda1 , b, andk are
free parameters. In fact, on identifyinga15z0 , b5v/2c,
k5vu/c, and neglecting backpropagating waves by a
proachingh5z1ct.2z, Eq. ~46! becomes Eq.~45! after
straightforward algebraic manipulations. Our Eq.~42! is then
a superposition of these BG focus wave modes, in an an
gous way that Ziolkowski’s EDPET’s@12# are superpositions
of the fundamental Gaussian focus wave modes@35#. The
detailed study of Eq.~42! is deferred to future work. We only
point out here that Eq.~42! contains as particular cases of i
free parameters most of the classes of focus wave mo
previously known, as (u50) Ziolkowski’s EDPET’s with
the Poisson-like spectrum@12#, (u50,a,t0→`,a/t05const!
the original Brittingham focus wave mode@35#, and (u
Þ0,a,t0→`,a/t05const) Overfelt’s BG pulse.

VIII. CONCLUSIONS

We have studied few-cycle pulsed-beam solutions of
paraxial wave equation obtained by superposing BG be
of different frequencies but having the same Rayleigh ra
and cone angle as those produced by mode-locked reson
with toroidal mirrors, or equivalently, by superposing ide
tical ID pulses with propagation directions distributed ov
the surface of a cone. In particular, we have found BG pul
r.
a-
-
y

-

lo-

es

e
s
e

tors

r
d

beams with the Poisson-like spectrum as a new solution
the paraxial wave equation in free space, representing
tially and temporally localized waves with finite energy a
pseudo-non-diffracting behavior. Each pulsed beam is
pressed in terms of a rational function and a Legendre p
nomial, and is defined by the values of four parameters. S
able choices of these parameters yield the ID and BessX
pulses, and in the many-cycle limit the BG beams and the
fore the Gaussian and Bessel beams. The four-param
closed-form expression of the BG pulsed beams may be
interest as an alternative analytical representation of
above beams and pulsed beams for further analytical de
opments, or to synthesize new solutions of the wave equa
on integrating over the free parameters.

BG pulsed beams satisfying the relationu.u0 appear to
be of particular interest. They are finite-energy replicas of
nondiffracting, nondispersing, superluminal Bessel-X waves
within a finite propagation distance 2D, this distance being
larger than the equivalent diffraction length expected fro
their transversal size. Outside the diffraction-free range,
letter X starts deformating, breaking, and slowing down.
large propagation distances, the three-dimensional pul
beam structure is transformed into an expanding annu
propagating at the velocity of lightc.

The reported pulsed beam can be easily generalized
superposing higher-order BG beams with vortices, or
more recently reported@36,37# generalized BG beams. In
another sense, the study of the propagation of BG pul
beams in dispersive media may also be of interest, sinc
suitable choice of frequency dependence of the cone ang
the Bessel beams composing anX-Bessel wave is known to
result in the suppression or diminution of pulse spreading
propagation due to dispersion@38#.
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